Synthesis, structure, and properties of switchable cross-conjugated 1,4-diaryl-1,3-butadiynes based on 1,8-bis(dimethylamino)naphthalene

Beilstein J Org Chem. 2023 May 15:19:674-686. doi: 10.3762/bjoc.19.49. eCollection 2023.

Abstract

A set of novel 1,4-diaryl-1,3-butadiynes terminated by two 7-(arylethynyl)-1,8-bis(dimethylamino)naphthalene fragments was prepared via the Glaser-Hay oxidative dimerization of 2-ethynyl-7-(arylethynyl)-1,8-bis(dimethylamino)naphthalenes. The oligomers synthesized in this way are cross-conjugated systems, in which two conjugation pathways are possible: π-conjugation of 1,8-bis(dimethylamino)naphthalene (DMAN) fragments through a butadiyne linker and a donor-acceptor aryl-C≡C-DMAN conjugation path. The conjugation path can be "switched" simply by protonation of DMAN fragments. X-ray diffraction, UV-vis spectroscopy and cyclic voltammetry are applied to analyze the extent of π-conjugation and the efficiency of particular donor-acceptor conjugation path in these new compounds. X-ray structures and absorption spectra of doubly protonated tetrafluoroborate salts of the oligomers are also discussed.

Keywords: 1,4-diaryl-1,3-butadiynes; 1,8-bis(dimethylamino)naphthalene; Glaser–Hay reaction; cross-conjugated systems; donor–acceptor systems.

Grants and funding

This work was supported by the Russian Foundation for Basic Research (project No. 20-33-90017).