Individualized Positive End-expiratory Pressure Titration Strategies in Superobese Patients Undergoing Laparoscopic Surgery: Prospective and Nonrandomized Crossover Study

Anesthesiology. 2023 Sep 1;139(3):249-261. doi: 10.1097/ALN.0000000000004631.

Abstract

Background: Superobesity and laparoscopic surgery promote negative end-expiratory transpulmonary pressure that causes atelectasis formation and impaired respiratory mechanics. The authors hypothesized that end-expiratory transpulmonary pressure differs between fixed and individualized positive end-expiratory pressure (PEEP) strategies and mediates their effects on respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters in superobese patients.

Methods: In this prospective, nonrandomized crossover study including 40 superobese patients (body mass index 57.3 ± 6.4 kg/m2) undergoing laparoscopic bariatric surgery, PEEP was set according to (1) a fixed level of 8 cm H2O (PEEPEmpirical), (2) the highest respiratory system compliance (PEEPCompliance), or (3) an end-expiratory transpulmonary pressure targeting 0 cm H2O (PEEPTranspul) at different surgical positioning. The primary endpoint was end-expiratory transpulmonary pressure at different surgical positioning; secondary endpoints were respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters.

Results: Individualized PEEPCompliance compared to fixed PEEPEmpirical resulted in higher PEEP (supine, 17.2 ± 2.4 vs. 8.0 ± 0.0 cm H2O; supine with pneumoperitoneum, 21.5 ± 2.5 vs. 8.0 ± 0.0 cm H2O; and beach chair with pneumoperitoneum; 15.8 ± 2.5 vs. 8.0 ± 0.0 cm H2O; P < 0.001 each) and less negative end-expiratory transpulmonary pressure (supine, -2.9 ± 2.0 vs. -10.6 ± 2.6 cm H2O; supine with pneumoperitoneum, -2.9 ± 2.0 vs. -14.1 ± 3.7 cm H2O; and beach chair with pneumoperitoneum, -2.8 ± 2.2 vs. -9.2 ± 3.7 cm H2O; P < 0.001 each). Titrated PEEP, end-expiratory transpulmonary pressure, and lung volume were lower with PEEPCompliance compared to PEEPTranspul (P < 0.001 each). Respiratory system and transpulmonary driving pressure and mechanical power normalized to respiratory system compliance were reduced using PEEPCompliance compared to PEEPTranspul.

Conclusions: In superobese patients undergoing laparoscopic surgery, individualized PEEPCompliance may provide a feasible compromise regarding end-expiratory transpulmonary pressures compared to PEEPEmpirical and PEEPTranspul, because PEEPCompliance with slightly negative end-expiratory transpulmonary pressures improved respiratory mechanics, lung volumes, and oxygenation while preserving cardiac output.

MeSH terms

  • Cross-Over Studies
  • Humans
  • Laparoscopy*
  • Pneumoperitoneum*
  • Positive-Pressure Respiration
  • Prospective Studies
  • Respiratory Mechanics
  • Tidal Volume