Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance

Adv Mater. 2023 Aug;35(32):e2300696. doi: 10.1002/adma.202300696. Epub 2023 Jun 29.

Abstract

Thermocells can continuously convert heat into electricity, and they are widely used to power wearable electronic devices. However, they have a risk of leakage and poor mechanical properties. Although quasi-solid ionic thermocells can overcome the issue of electrolyte leakage, the trade-off between their excellent mechanical properties and high thermopower remains a major challenge. In this study, stretching-induced crystallization and the thermoelectric effect are combined to propose a high-strength quasi-solid stretchable polyvinyl alcohol thermogalvanic thermocell (SPTC) with a large tensile strength of 19 MPa and high thermopower of 6.5 mV K-1 . The SPTC exhibits a high stretchability of 1300%, ultrahigh toughness of 163.4 MJ m-3 , and high specific output power density of 1969 µW m-2 K-2 . These comprehensive properties are superior to those of previously reported quasi-solid stretchable thermogalvanic thermocells. The use of SPTC-based systems in wearable devices for energy-autonomous strain sensors and health monitoring is demonstrated. This can facilitate the rapid implementation of sustainable wearable electronics in the Internet of Things era.

Keywords: strength; stretchable thermogalvanic thermocells; stretching-induced crystallization; thermal energy harvesting; toughness; wearable devices.