Tunable phase-mismatched mid-infrared difference-frequency generation between 6 and 17 µm in CdTe

Opt Lett. 2023 Apr 1;48(7):1786-1789. doi: 10.1364/OL.482347.

Abstract

In parametric conversion, phase-matching techniques such as birefringence and quasi phase-matching (PM) with the designed crystal angle or periodically poled polarities are employed to fulfill the requirement of momentum conservation. However, directly using phase-mismatched interactions in nonlinear media with large quadratic nonlinear coefficient remains unheeded. Here, for the first time to the best of our knowledge, we study the phase-mismatched difference-frequency generation (DFG) in an isotropic cadmium telluride (CdTe) crystal, with the comparison of other DFG processes based on birefringence-PM, quasi-PM, and random-quasi-PM. Long-wavelength mid-infrared (LWMIR) phase-mismatched DFG with an ultra-broadband spectral tuning range of 6-17 µm based on CdTe is demonstrated. Thanks to the giant quadratic nonlinear coefficient (∼109 pm/V) and good figure of merit in the parametric process, the output power up to 100 µW is obtained, which is comparable to or even better than the DFG output from a polycrystalline ZnSe with the same thickness facilitated by random-quasi-PM. A proof-of-concept demonstration in gas sensing of CH4 and SF6 is conducted based on the phase-mismatched DFG as a typical application. Our results demonstrate the feasibility of phase-mismatched parametric conversion in producing useful LWMIR power and ultra-broadband tunability in a simple and convenient way without the necessity of controlling the polarization, phase-matching angle, or pole periods, which could find applications in the fields of spectroscopy and metrology.