Helmholtz-resonator quartz-enhanced photoacoustic spectroscopy

Opt Lett. 2023 Apr 1;48(7):1678-1681. doi: 10.1364/OL.481457.

Abstract

In this work, Helmholtz-resonator quartz-enhanced photoacoustic spectroscopy (HR-QEPAS) was developed for trace gas sensing. A pair of Helmholtz resonators with high-order resonance frequency was designed and coupled with a quartz tuning fork (QTF). Detailed theoretical analysis and experimental research were carried out to optimize the HR-QEPAS performance. As a proof-of-concept experiment, the water vapor in the ambient air was detected using a 1.39 µm near-infrared laser diode. Benefiting from the acoustic filtering of the Helmholtz resonance, the noise level of QEPAS was reduced by >30%, making the QEPAS sensor immune to environmental noise. In addition, the photoacoustic signal amplitude was improved significantly by >1 order of magnitude. As a result, the detection signal-to-noise ratio was enhanced by >20 times, compared with a bare QTF.