Construction of Inorganic-Rich Cathode Electrolyte Interphase on Co-Free Cathodes

ACS Appl Mater Interfaces. 2023 Jun 7;15(22):26627-26636. doi: 10.1021/acsami.3c02553. Epub 2023 May 23.

Abstract

Lithium-rich layered oxides (LRLOs), with the chemical formula of xLi2MnO3·(1 - x)LiMO2, delivering higher specific discharge capacity, are potential cathode materials for lithium-ion batteries. However, the dissolution of transition metal ions and the instability of the cathode-electrolyte interphase (CEI) hinder the commercial application of LRLOs. Herein, a simple and affordable method is developed for the construction of a robust CEI layer by quenching a kind of cobalt-free LRLO, Li1.2Ni0.15Fe0.1Mn0.55O2 (denoted as NFM), in 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether solvent. This robust CEI, with well-distributed LiF, TMFx, and partial organic component CFx, performs as a physical barrier to prevent NFM from direct contact with the electrolyte, suppresses the oxygen release, and ensures the CEI layer stability. The customized CEI with LiF and TMFx-rich phase considerably enhances the NFM cycle stability and the initial coulomb efficiency and inhibits voltage fading. This work provides a valuable strategy for designing stable interface chemistry on the cathode of lithium-ion batteries.

Keywords: CEI; HFE; electrode; lithium ion battery; lithium-rich material; quench.