Passive quadrature demodulation of multiplexed interferometric sensors using a CW correlation reflectometer with a single DFB diode laser

Opt Lett. 2022 Nov 1;47(21):5533-5536. doi: 10.1364/OL.474295.

Abstract

In this Letter, we report a novel, to the best of our knowledge, and simple approach for passive quadrature-phase demodulation of relatively long multiplexed interferometers based on two-channel coherence correlation reflectometry. Two-wavelength channels are generated using a single unmodulated CW-DFB diode laser and an acousto-optic frequency shifter. The introduced frequency shift determines the optical lengths of the interferometers. In our experiments, all interferometers have the same optical length of 32 cm corresponding to the π/2 phase difference between channel signals. An additional fiber delay line was introduced between channels to destroy coherence between initial and frequency-shifted channels. Demultiplexing of channels and sensors was performed using correlation-based signal processing. Amplitudes of cross correlation peaks obtained for both channels were used to extract the interferometric phase for each interferometer. Phase demodulation of relatively long multiplexed interferometers is experimentally demonstrated. Experimental results prove that the proposed technique is suitable for interrogating a serial array of relatively long interferometers dynamically modulated with phase excursions exceeding 2π. Simultaneous interrogation and phase demodulation were experimentally demonstrated using an in-line array of low-finesse Fabry-Perot interferometric sensors.