Spatially multiplexed dielectric tensor tomography

Opt Lett. 2022 Dec 1;47(23):6205-6208. doi: 10.1364/OL.474969.

Abstract

Dielectric tensor tomography (DTT) enables the reconstruction of three-dimensional (3D) dielectric tensors, which provides a physical measure of 3D optical anisotropy. Herein, we present a cost-effective and robust method of DTT using spatial multiplexing. Exploiting two orthogonally polarized reference beams with different angles in an off-axis interferometer, two polarization-sensitive interferograms were multiplexed and recorded using a single camera. Then, the two interferograms were demultiplexed in the Fourier domain. By measuring the polarization-sensitive fields for various illumination angles, 3D dielectric tensor tomograms were reconstructed. The proposed method was experimentally demonstrated by reconstructing the 3D dielectric tensors of various liquid-crystal (LC) particles with radial and bipolar orientational configurations.