MaxCal can infer models from coupled stochastic trajectories of gene expression and cell division

Biophys J. 2023 Jul 11;122(13):2623-2635. doi: 10.1016/j.bpj.2023.05.017. Epub 2023 May 22.

Abstract

Gene expression is inherently noisy due to small numbers of proteins and nucleic acids inside a cell. Likewise, cell division is stochastic, particularly when tracking at the level of a single cell. The two can be coupled when gene expression affects the rate of cell division. Single-cell time-lapse experiments can measure both fluctuations by simultaneously recording protein levels inside a cell and its stochastic division. These information-rich noisy trajectory data sets can be harnessed to learn about the underlying molecular and cellular details that are often not known a priori. A critical question is: How can we infer a model given data where fluctuations at two levels-gene expression and cell division-are intricately convoluted? We show the principle of maximum caliber (MaxCal)-integrated within a Bayesian framework-can be used to infer several cellular and molecular details (division rates, protein production, and degradation rates) from these coupled stochastic trajectories (CSTs). We demonstrate this proof of concept using synthetic data generated from a known model. An additional challenge in data analysis is that trajectories are often not in protein numbers, but in noisy fluorescence that depends on protein number in a probabilistic manner. We again show that MaxCal can infer important molecular and cellular rates even when data are in fluorescence, another example of CST with three confounding factors-gene expression noise, cell division noise, and fluorescence distortion-all coupled. Our approach will provide guidance to build models in synthetic biology experiments as well as general biological systems where examples of CSTs are abundant.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bayes Theorem
  • Cell Division
  • Gene Expression
  • Models, Biological*
  • Proteins* / metabolism
  • Stochastic Processes

Substances

  • Proteins