Photolysis mechanism of eleven insecticides under simulated sunlight irradiation: Kinetics, pathway and QSAR

Chemosphere. 2023 Sep:334:138968. doi: 10.1016/j.chemosphere.2023.138968. Epub 2023 May 19.

Abstract

Insecticides are widely used in crop protection against insects and frequently detected in aquatic environment. Photolysis kinetics are directly related with exposure assessment and risk assessment. However, the photolysis mechanism of neonicotinoid insecticides with different structures has not been studied and compared systematically in the literature. In this paper, the photolysis rate constants in water were determined for eleven insecticides under irradiation of simulated sunlight. At the same time, the photolysis mechanism and effect of dissolved organic matter (DOM) on their photolysis were studied. The results showed that photolysis rates of eleven insecticides vary in a large range. The photolysis rates of nitro-substituted neonicotinoids and butenolide insecticide are much faster than that of cyanoimino-substituted neonicotinoids and sulfoximine insecticide. The ROS scavenging activity assays reveal that direct photolysis dominates the degradation of seven insecticides and, on the other hand, self-sensitized photolysis dominates four insecticides. The shading-effect from DOM can reduce the direct photolysis rates, on the other hand, ROSs generated by triplet-state DOM (3DOM*) can also accelerate photolysis of insecticides. According to the photolytic products identified from HPLC-MS, these eleven insecticides have different photolysis pathways. Six insecticides are degraded from the removal of nitro group from their parent compounds and four insecticides are degraded through ·OH reaction or singlet oxygen (1O2) reaction. QSAR (quantitative structure-activity relationship) analysis showed that photolysis rate was directly related to the energy gap between the highest occupied molecular orbital to the lowest unfilled molecular orbital (Egap = ELUMO-EHOMO) and dipole moment (δ). These two descriptors reflect the chemical stability and reactivity of insecticides. The pathways developed from identified products and the molecular descriptors of QSAR models can well verify the photolysis mechanisms of eleven insecticides.

Keywords: Insecticides; Pathway; Photolysis mechanism; QSAR; Quantum chemistry.

MeSH terms

  • Insecticides* / analysis
  • Kinetics
  • Neonicotinoids / analysis
  • Photolysis
  • Quantitative Structure-Activity Relationship
  • Sunlight
  • Water Pollutants, Chemical* / analysis

Substances

  • Insecticides
  • Neonicotinoids
  • Water Pollutants, Chemical