Nutrient-dependent regulation of β-cell proinsulin content

J Biol Chem. 2023 Jul;299(7):104836. doi: 10.1016/j.jbc.2023.104836. Epub 2023 May 19.

Abstract

Insulin is made from proinsulin, but the extent to which fasting/feeding controls the homeostatically regulated proinsulin pool in pancreatic β-cells remains largely unknown. Here, we first examined β-cell lines (INS1E and Min6, which proliferate slowly and are routinely fed fresh medium every 2-3 days) and found that the proinsulin pool size responds to each feeding within 1 to 2 h, affected both by the quantity of fresh nutrients and the frequency with which they are provided. We observed no effect of nutrient feeding on the overall rate of proinsulin turnover as quantified from cycloheximide-chase experiments. We show that nutrient feeding is primarily linked to rapid dephosphorylation of translation initiation factor eIF2α, presaging increased proinsulin levels (and thereafter, insulin levels), followed by its rephosphorylation during the ensuing hours that correspond to a fall in proinsulin levels. The decline of proinsulin levels is blunted by the integrated stress response inhibitor, ISRIB, or by inhibition of eIF2α rephosphorylation with a general control nonderepressible 2 (not PERK) kinase inhibitor. In addition, we demonstrate that amino acids contribute importantly to the proinsulin pool; mass spectrometry shows that β-cells avidly consume extracellular glutamine, serine, and cysteine. Finally, we show that in both rodent and human pancreatic islets, fresh nutrient availability dynamically increases preproinsulin, which can be quantified without pulse-labeling. Thus, the proinsulin available for insulin biosynthesis is rhythmically controlled by fasting/feeding cycles.

Keywords: amino acids; biosynthesis; endoplasmic reticulum; phospho-eIF2α; preproinsulin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line
  • Humans
  • Insulin / biosynthesis
  • Insulin-Secreting Cells* / drug effects
  • Insulin-Secreting Cells* / metabolism
  • Islets of Langerhans / metabolism
  • Nutrients* / pharmacology
  • Proinsulin* / biosynthesis
  • Proinsulin* / metabolism
  • Signal Transduction
  • Stress, Physiological
  • Up-Regulation

Substances

  • Insulin
  • Proinsulin
  • EIF2S1 protein, human