Gut microbiome and serum metabolome analyses identify biomarkers associated with sexual maturity in quails

Poult Sci. 2023 Jul;102(7):102762. doi: 10.1016/j.psj.2023.102762. Epub 2023 Apr 28.

Abstract

Increasing evidence indicates that the gut microbiome plays an important role in host aging and sexual maturity. However, the gut microbial taxa associated with sexual maturity in quails are unknown. This study used shotgun metagenomic sequencing to identify bacterial taxa associated with sexual maturity in d 20 and d 70 quails. We found that 17 bacterial species and 67 metagenome-assembled genomes (e.g., Bacteroides spp. and Enterococcus spp.) significantly differed between the d 20 and d 70 groups, including 5 bacterial species (e.g., Enterococcus faecalis) enriched in the d 20 group and 12 bacterial species (e.g., Christensenella massiliensis, Clostridium sp. CAG:217, and Bacteroides neonati) which had high abundances in the d 70 group. The bacterial species enriched in d 20 or d 70 were key biomarkers distinguishing sexual maturity and significantly correlated with the shifts in the functional capacities of the gut microbiome. Untargeted serum metabolome analysis revealed that 5 metabolites (e.g., nicotinamide riboside) were enriched in the d 20 group, and 6 metabolites (e.g., D-ribose, stevioside, and barbituric acid) were enriched in the d 70 group. Furthermore, metabolites with high abundances in the d 20 group were significantly enriched for the KEGG pathways of arginine biosynthesis, nicotinate and nicotinamide metabolism, and lysine degradation. However, glutathione metabolism and valine, leucine and isoleucine biosynthesis were enriched in high-abundance metabolites from the d 70 group. These results provide important insights into the effects of gut microbiome and host metabolism on quail sexual maturity.

Keywords: gut microbiome; metagenomic sequencing; quail; serum metabolome; sexual maturity.

MeSH terms

  • Animals
  • Bacteria
  • Biomarkers
  • Chickens
  • Gastrointestinal Microbiome*
  • Metabolome
  • Metagenome

Substances

  • Biomarkers