How does leaf succulence relate to plant drought resistance in woody shrubs?

Tree Physiol. 2023 Sep 6;43(9):1501-1513. doi: 10.1093/treephys/tpad066.

Abstract

Succulence describes the amount of water stored in cells or organs, regardless of plant life-form, including woody and herbaceous plants. In dry environments, plants with greater survival often have greater leaf succulence. However, it is unclear how leaf succulence relates to plant drought resistance strategies, including isohydry (closing stomata to maintain leaf water status) and anisohydry (adjusting cell turgor to tolerate low leaf water status), which exist on a continuum that can be quantified by hydroscape area (larger hydroscape area indicates more anisohydric). We evaluated 12 woody species with differing leaf succulence in a glasshouse dry-down experiment to determine relationships among leaf succulence (degree of leaf succulence, leaf succulent quotient and leaf thickness) and plant drought response (hydroscape area, plant water use, turgor loss point and predawn leaf water potential when transpiration ceased). Hydroscape areas ranged from 0.72 (Carpobrotus modestus S.T.Blake; crassulacean acid metabolism (CAM) plants) to 7.01 MPa2 (Rhagodia spinescens R.Br.; C3 plants), suggesting that C. modestus was more isohydric and R. spinescens was more anisohydric. More isohydric species C. modestus, Carpobrotus rossii (Haw.) Schwantes and Disphyma crassifolium (L.) L.Bolus (CAM plants) had greater leaf succulence, lower root allocation, used stored water and ceased transpiration at higher predawn leaf water potential, shortly after reaching their turgor loss point. The remaining nine species that are not CAM plants had larger hydroscape areas and ceased transpiration at lower predawn leaf water potential. Greater leaf succulence was not related to cumulative water loss until transpiration ceased in drying soils. All 12 species had high turgor loss points (-1.32 to -0.59 MPa), but turgor loss point was not related to hydroscape area or leaf succulence. Our data suggest that overall greater leaf succulence was related to isohydry, but this may have been influenced by the fact that these species were also CAM plants.

Keywords: degree of iso-anisohydry; desiccation; plant drought response; plant–water relations; stored water.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Drought Resistance*
  • Droughts
  • Plant Leaves / physiology
  • Plant Stomata* / physiology
  • Plants / metabolism
  • Water / physiology

Substances

  • Water