TRPM4 contribution in mouse uterine contractions

Reproduction. 2023 Jun 19;166(2):77-87. doi: 10.1530/REP-22-0484. Print 2023 Aug 1.

Abstract

In brief: Inappropriate uterine contractions are a matter of concern during pregnancy or menses. We identified the transient receptor potential melastatin 4 (TRPM4) ion channel as a new actor in mouse uterine contractions highlighting this protein as a potential pharmacological target for a better control of myometrial activity.

Abstract: Control of uterine contractions is of interest in the context of inappropriate myometrial activity during pregnancy and at time of delivery, but it is also a matter for menstrual pain. While several molecular determinants of myometrial contractions have been described, the complete distribution of roles to the various actors is far from understood. A key phenomenon is a variation in cytoplasmic Ca2+ which leads to the activation of calmodulin in smooth muscle and also in the phosphorylation of myosin allowing contraction. The Ca2+ - TRPM4 channel which is known to modulate Ca2+- fluxes in several cell types was shown to participate in vascular as well as detrusor muscle contraction. We thus designed a study to determine whether it also participates in myometrial contraction. Uterine rings were isolated from Trpm4+/+ and Trpm4-/- non-pregnant adult mice and contractions were recorded using an isometric force transducer. In basal conditions, spontaneous contractions were similar in both groups. Application of 9-phenanthrol, a pharmacological TRPM4 inhibitor, dose-dependently reduced contraction parameters in Trpm4+/+ rings with an IC50 around 2.10-6 mol/L. The effect of 9-phenanthrol was significantly reduced in Trpm4-/- rings. The effect of oxytocin was tested and was found to be stronger in Trpm4+/+ rings compared to Trpm4-/-. Under a constant stimulation by oxytocin, 9-phenanthrol still reduced contraction parameters in Trpm4+/+ rings with a smaller effect on Trpm4-/-. Altogether it indicates that TRPM4 participates in uterine contractions in mice and may thus be evaluated as a new target to control such contractions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism
  • Female
  • Mice
  • Myometrium / metabolism
  • Oxytocin / metabolism
  • Pregnancy
  • TRPM Cation Channels* / metabolism
  • Uterine Contraction*

Substances

  • 9-phenanthrol
  • Calcium
  • Oxytocin
  • TRPM Cation Channels
  • TRPM4 protein, mouse