Sequential-Stimuli Induced Stepwise-Response of Pyridylpyrenes

Adv Mater. 2023 Aug;35(32):e2302732. doi: 10.1002/adma.202302732. Epub 2023 Jun 28.

Abstract

Stimuli-responsive materials, especially multi-stimuli-responsive materials, can sense external stimuli such as light, heat, and force, have shown great potential in drug delivery, data storage, encryption, energy-harvesting, and artificial intelligence. Conventional multi-stimuli-responsive materials are sensitive to each independent stimulus, causing losses in the diversity and accuracy of the identification for practical application. Herein, a unique phenomenon of sequential-stimuli induced stepwise-response generated from elaborately designed single-component organic materials is reported, which shows large bathochromic shifts up to 5800 cm-1 under sequential stimuli of force and light. In contrast to multi-stimuli-responsive materials, the response of these materials strictly relies on the sequence of stimuli, allowing logicality, rigidity, and accuracy to be integrated into one single-component material. The molecular keypad lock is built based on these materials, pointing promising to a future for this logical response in significant practical applications. This breakthrough gives a new drive to classical stimuli-responsiveness and provides a fundamental design strategy for new generations of high-performance stimuli-responsive materials.

Keywords: UV light; bathochromic shift; mechanical force; molecular keypad lock; sequential-stimuli induced stepwise-response.