Identification and validation of the microRNAs and hub genes for pancreatic ductal adenocarcinoma by an integrated bioinformatic analysis

J Gastrointest Oncol. 2023 Apr 29;14(2):719-732. doi: 10.21037/jgo-23-192.

Abstract

Background: In the progression of pancreatic ductal adenocarcinoma (PDAC), aberrant micro RNAs (miRNAs) expression plays a crucial role. This study sought to identify and validate the key miRNAs and potential target genes involved in PDAC. A bioinformatic analysis was conducted to determine their potential use as biomarkers and therapeutic targets.

Methods: Gene profiling data sets (GSE41372 and GSE32688) were retrieved from the Gene Expression Omnibus database. Differentially expressed miRNAs (DEMs) with a P value <0.05, and |fold change| >2 was identified. The prognostic value of the DEMs was accessed using the online server Kaplan-Meier plotter. Further, gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed using DAVID 6.7. The protein-protein interaction analyses were conducted with STRING, and miRNA-hub gene networks were constructed using Cytoscape software. The PDAC cells were transfected with miRNA inhibitors or mimics. Cell Counting Kit-8 assays and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to examine cell proliferation and apoptosis, respectively. Wound-healing assays were performed to evaluate cell migration.

Results: Three DEMs (hsa-miR-21-5p, hsa-miR-135b-5p, and hsa-miR-222-3p) were identified. High expression levels of hsa-miR-21-5p, hsa-miR-135b-5p, or hsa-miR-222-3p predicted poor overall survival in PDAC patients. The pathway analysis revealed that the predicted target genes of the DEMs were closely related to several signaling pathways (including 'pathways in cancer', 'miRNAs in cancer', 'platinum drug resistance', 'lipid and atherosclerosis', and 'MAPK signaling pathway'). The MYC proto-oncogene (MYC), phosphate and tensin homolog gene (PTEN), poly(ADP-ribose) polymerase 1 (PARP1), von Hippel-Lindau (VHL), and fork head box p3 (FOXP3) were identified as potential target genes. The inhibition of hsa-miR-21-5p, hsa-miR-135b-5p, or hsa-miR-222-3p expression decreased cell proliferation. The overexpression of hsa-miR-21-5p, hsa-miR-135b-5p, or hsa-miR-222-3p facilitated PDAC cell migration.

Conclusions: This study constructed the miRNA-hub gene network, which provides novel insights into the PDAC progression. Although further research is required, our results offer clues for new potential prognostic markers and therapeutic targets of PDAC.

Keywords: Pancreatic ductal adenocarcinoma (PDAC); bioinformatic analysis; hub genes; micro RNA (miRNA).