Multistable chimera states in a smallest population of three coupled oscillators

Phys Rev E. 2023 Apr;107(4-1):044209. doi: 10.1103/PhysRevE.107.044209.

Abstract

We uncover the emergence of distinct sets of multistable chimera states in addition to chimera death and synchronized states in a smallest population of three globally coupled oscillators with mean-field diffusive coupling. Sequence of torus bifurcations result in the manifestation of distinct periodic orbits as a function of the coupling strength, which in turn result in the genesis of distinct chimera states constituted by two synchronized oscillators coexisting with an asynchronous oscillator. Two subsequent Hopf bifurcations result in homogeneous and inhomogeneous steady states resulting in desynchronized steady states and chimera death state among the coupled oscillators. The periodic orbits and the steady states lose their stability via a sequence of saddle-loop and saddle-node bifurcations finally resulting in a stable synchronized state. We have generalized these results to N coupled oscillators and also deduced the variational equations corresponding to the perturbation transverse to the synchronization manifold and corroborated the synchronized state in the two-parameter phase diagrams using its largest eigenvalue. Chimera states in three coupled oscillators emerge as a solitary state in N coupled oscillator ensemble.