Cytosolic Enzymes Generate Cannabinoid Metabolites 7-Carboxycannabidiol and 11-Nor-9-carboxytetrahydrocannabinol

ACS Med Chem Lett. 2023 Apr 20;14(5):614-620. doi: 10.1021/acsmedchemlett.3c00017. eCollection 2023 May 11.

Abstract

The cannabinoids cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) undergo extensive oxidative metabolism in the liver. Although cytochromes P450 form the primary, pharmacologically active, hydroxylated metabolites of CBD and THC, less is known about the enzymes that generate the major in vivo circulating metabolites of CBD and THC, 7-carboxy-CBD and 11-carboxy-THC, respectively. The purpose of this study was to elucidate the enzymes involved in forming these metabolites. Cofactor dependence experiments with human liver subcellular fractions revealed that 7-carboxy-CBD and 11-carboxy-THC formation is largely dependent on cytosolic NAD+-dependent enzymes, with lesser contributions from NADPH-dependent microsomal enzymes. Experiments with chemical inhibitors provided evidence that 7-carboxy-CBD formation is mainly dependent on aldehyde dehydrogenases and 11-carboxy-THC formation is mediated also in part by aldehyde oxidase. This study is the first to demonstrate the involvement of cytosolic drug-metabolizing enzymes in generating major in vivo metabolites of CBD and THC and addresses a knowledge gap in cannabinoid metabolism.