Diruthenium Catalyst for Hydrogen Production from Aqueous Formic Acid

Inorg Chem. 2023 May 29;62(21):8080-8092. doi: 10.1021/acs.inorgchem.2c04079. Epub 2023 May 17.

Abstract

Diruthenium complexes [{(η6-arene)RuCl}2(μ-κ22-benztetraimd)]2+ containing the bridging bis-imidazole methane-based ligand {1,4-bis(bis(2-ethyl-5-methyl-1H-imidazol-4-yl)methyl)benzene} (benztetraimd) are synthesized for catalytic formic acid dehydrogenation in water at 90 °C. Catalyst [{(η6-p-cymene)RuCl}2(μ-κ22-benztetraimd)]2+ [1-Cl2] exhibited a remarkably high turnover frequency (1993 h-1 per Ru atom) and long-term stability over 60 days for formic acid dehydrogenation, while the analogous (η6-benzene)diruthenium and mononuclear catalysts displayed low activity with poor long-term stability. Notably, catalyst [1-Cl2] also displayed an appreciably high turnover number of 93 200 for the bulk-scale reaction. In addition, the in-depth mass and nuclear magnetic resonance investigations under the catalytic and control experimental conditions revealed the active involvement of several crucial catalytic intermediate species, such as Ru-aqua species [{(η6-p-cymene)Ru(H2O)}2(μ-L)]2+ [1-(OH2)2], Ru-formato species [{(η6-p-cymene)Ru(HCOO)}2(μ-L)] [1-(HCOO)2], and Ru-hydrido species [{(η6-p-cymene)Ru(H)}2(μ-L)] [1-(H)2], in the catalytic formic acid dehydrogenation reaction.