Scalable High-Precision Trimming of Photonic Resonances by Polymer Exposure to Energetic Beams

Nano Lett. 2023 Jun 14;23(11):4800-4806. doi: 10.1021/acs.nanolett.3c00220. Epub 2023 May 17.

Abstract

Integrated photonic circuits (PICs) have seen an explosion in interest, through to commercialization in the past decade. Most PICs rely on sharp resonances to modulate, steer, and multiplex signals. However, the spectral characteristics of high-quality resonances are highly sensitive to small variations in fabrication and material constants, which limits their applicability. Active tuning mechanisms are commonly employed to account for such deviations, consuming energy and occupying valuable chip real estate. Readily employable, accurate, and highly scalable mechanisms to tailor the modal properties of photonic integrated circuits are urgently required. Here, we present an elegant and powerful solution to achieve this in a scalable manner during the semiconductor fabrication process using existing lithography tools: by exploiting the volume shrinkage exhibited by certain polymers to permanently modulate the waveguide's effective index. This technique enables broadband and lossless tuning with immediate applicability in wide-ranging applications in optical computing, telecommunications, and free-space optics.

Keywords: nanofabrication; photonic integrated circuits; tunable photonics.