Discriminatory Gate-Opening Effect in a Flexible Metal-Organic Framework for Inverse CO2 /C2 H2 Separation

Small. 2023 Sep;19(38):e2302975. doi: 10.1002/smll.202302975. Epub 2023 May 17.

Abstract

Considering the significant application of acetylene (C2 H2 ) in the manufacturing and petrochemical industries, the selective capture of impurity carbon dioxide (CO2 ) is a crucial task and an enduring challenge. Here, a flexible metal-organic framework (Zn-DPNA) accompanied by a conformation change of the Me2 NH2 + ions in the framework is reported. The solvate-free framework provides a stepped adsorption isotherm and large hysteresis for C2 H2 , but type-I adsorption for CO2 . Owing to their uptakes difference before gate-opening pressure, Zn-DPNA demonstrated favorable inverse CO2 /C2 H2 separation. According to molecular simulation, the higher adsorption enthalpy of CO2 (43.1 kJ mol-1 ) is due to strong electrostatic interactions with Me2 NH2 + ions, which lock the hydrogen-bond network and narrow pores. Furthermore, the density contours and electrostatic potential verifies the middle of the cage in the large pore favors C2 H2 and repels CO2 , leading to the expansion of the narrow pore and further diffusion of C2 H2 . These results provide a new strategy that optimizes the desired dynamic behavior for one-step purification of C2 H2 .

Keywords: acetylene purification; electrostatic repulsion; flexible metal-organic frameworks; inverse selectivity; selective gate-opening effect.