Intramolecular Singlet Fission in Pentacene Oligomers via an Intermediate State

J Phys Chem B. 2023 May 25;127(20):4554-4561. doi: 10.1021/acs.jpcb.3c00516. Epub 2023 May 16.

Abstract

Intramolecular singlet fission (iSF) is an efficient strategy of multiexciton generation via a singlet exciton splitting into a correlated triplet pair in one organic molecule with more than two chromophores. Propeller-shaped iptycene-linked triisopropylsilyl(TIPS)-ethynyl functionalized pentacene oligomers (pent-monomer, pent-dimer, and pent-trimer) were synthesized, and the iSF dynamics of pent-dimer and -trimer were monitored by a visible-near-IR transient absorption (TA) spectroscopy. Quantum yields of the triplet pair, ∼80%, of both estimated by near-IR TA spectral analysis are in good agreement with the results of global analysis and triplet sensitization experiments. The iSF rate of pent-trimer is slightly faster than that of pent-dimer even with one more chromophore site. The unexpectedly weak difference indicates the existence of an intermediate process to realize iSF. The intermediate process might be determined by through-bond electronic coupling of the homoconjugation bridge in the pentacene oligomers. Our results suggest the importance of the rigid bridge to the fast iSF rate and the elongated lifetime of the correlated triplet pair in pentacene oligomers.