Non-Inflamed Tumor Microenvironment and Methylation/Downregulation of Antigen-Presenting Machineries in Cholangiocarcinoma

Cancers (Basel). 2023 Apr 20;15(8):2379. doi: 10.3390/cancers15082379.

Abstract

Cholangiocarcinoma (CCA) is a refractory cancer; a majority of CCAs represents a non-inflamed tumor phenotype that should be resistant to treatment, including immune checkpoint inhibitors (ICIs). In this study, we aimed to understand the molecular characteristics associated with non-inflamed CCAs. The genetic/epigenetic status of 36 CCAs was obtained from the Cancer Genome Atlas (PanCancerAtlas). CCAs were classified based on immune class using hierarchical clustering analysis of gene expressions related to tumor-infiltrating lymphocytes. The associations between immune class and genetic/epigenetic events were analyzed. We found that the tumors with alterations in FGFR2 and IDH1/2 had a "non-inflamed" tumor phenotype. A significant association was observed between the non-inflamed group and the downregulation of genes involved in antigen presentation (p = 0.0015). The expression of antigen-presenting machineries was inversely correlated with their DNA methylation levels, where 33.3% of tumors had an upregulation/low-methylation pattern, and 66.7% of tumors had a downregulation/high-methylation pattern. All tumors in the "inflamed" group exhibited an upregulation/low-methylation pattern. In contrast, 24 of 30 tumors in the non-inflamed group represent the downregulation/high-methylation pattern (p = 0.0005). Methylation with downregulation of antigen-presenting machineries is associated with the "non-inflamed" tumor phenotype of CCAs. This evidence provides important insights for developing new strategies for treating CCA.

Keywords: antigen-presenting machinery; cholangiocarcinoma; downregulation; driver mutation; human leukocyte antigen; methylation; tumor microenvironment.