In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution

Nat Chem Biol. 2023 Sep;19(9):1116-1126. doi: 10.1038/s41589-023-01319-0. Epub 2023 May 15.

Abstract

Protein stability is an essential property for biological function. In contrast to the vast knowledge on protein stability in vitro, little is known about the factors governing in-cell stability. Here we show that the metallo-β-lactamase (MBL) New Delhi MBL-1 (NDM-1) is a kinetically unstable protein on metal restriction that has evolved by acquiring different biochemical traits that optimize its in-cell stability. The nonmetalated (apo) NDM-1 is degraded by the periplasmic protease Prc that recognizes its partially unstructured C-terminal domain. Zn(II) binding renders the protein refractory to degradation by quenching the flexibility of this region. Membrane anchoring makes apo-NDM-1 less accessible to Prc and protects it from DegP, a cellular protease degrading misfolded, nonmetalated NDM-1 precursors. NDM variants accumulate substitutions at the C terminus that quench its flexibility, enhancing their kinetic stability and bypassing proteolysis. These observations link MBL-mediated resistance with the essential periplasmic metabolism, highlighting the importance of the cellular protein homeostasis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anti-Bacterial Agents
  • Microbial Sensitivity Tests
  • Peptide Hydrolases* / metabolism
  • Protein Stability
  • Proteolysis
  • beta-Lactamases* / genetics
  • beta-Lactamases* / metabolism

Substances

  • beta-Lactamases
  • Peptide Hydrolases
  • Anti-Bacterial Agents