Influence of green roof plant density and redirecting rainfall via runoff zones on rainfall retention and plant drought stress

Sci Total Environ. 2023 Sep 1:889:164043. doi: 10.1016/j.scitotenv.2023.164043. Epub 2023 May 13.

Abstract

Green roofs are a promising engineered ecosystem designed to reduce stormwater runoff and restore vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate, however, this increases the risk of plant drought stress. This study determined whether lower plant density or preferentially redirecting rainfall to plants on green roofs could reduce drought stress without reducing rainfall retention. Plant density was manipulated, and metal structures were installed above the substrate surfaces to redirect the flow of rainwater towards plants (runoff zones). Green roof modules were used to test three plant density treatments: unplanted, half-planted (10 plants/m2) and fully-planted (18 plants/m2), and two runoff zone treatments which were installed in unplanted and half-planted modules. It was expected that 1) green roofs with greater plant density would experience more drought stress (i.e., lower leaf water status), and 2) green roofs with runoff zones would show higher ET and hence retention compared with those without runoff zones, as water will be directed to plants (run-on zones), facilitating growth. Contrary to the hypothesis, evapotranspiration (ET) and rainfall retention were similar for half-planted and fully-planted modules, such that ∼82 % of applied rainfall was retained. While both vegetation treatments dried out the substrates before rainfall was applied, the fully-planted modules dried out quicker and showed significantly lower leaf water status than half-planted modules. This indicates that planting at lower density may reduce plant drought stress, without reducing rainfall retention. Installing runoff zones marginally reduced ET and rainfall retention, likely due to shading by the runoff zone structures reducing evaporation from the substrate. However, runoff also occurred earlier where runoff zones were installed as they likely created preferential flow paths that reduced soil moisture and therefore ET and retention. Despite reduced rainfall retention, plants in modules with runoff zones showed significantly higher leaf water status. Reducing plant density therefore represents a simple means of reducing plant stress on green roofs without reducing rainfall retention. Installing runoff zones on green roofs is a novel approach that could reduce plant drought stress, particularly in hot and dry climates, albeit at a small cost of reduced rainfall retention.

Keywords: Evapotranspiration; Green roof; Plant density; Plant drought stress; Redirecting rainfall; Retention.

MeSH terms

  • Conservation of Natural Resources*
  • Droughts
  • Ecosystem*
  • Plants
  • Rain
  • Water
  • Water Movements

Substances

  • Water