Petite Integration Factor 1 knockdown enhances gemcitabine sensitivity in pancreatic cancer cells via increasing DNA damage

J Appl Toxicol. 2023 Oct;43(10):1522-1532. doi: 10.1002/jat.4494. Epub 2023 May 16.

Abstract

Chemoresistance is still a vital obstacle in various tumors chemotherapy. This study aimed to explore the role of Petite Integration Factor 1 (PIF1) in the sensitivity of gemcitabine response to pancreatic cancer cells. Gene Expression Profiling Interactive Analysis (GEPIA) database was employed for evaluating the level of PIF1 in pancreatic cancer tissues and normal tissues. The mRNA level of PIF1 was detected via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The relative protein expression of PIF1, cleaved caspase-3, and phosphorylated histone H2Ax (γH2Ax) was assessed through western blot. Cell viability and apoptosis were assessed via Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Moreover, lactate dehydrogenase (LDH) release and caspase-3 activity were determined via the corresponding LDH Cytotoxicity Assay Kit and caspase-3 colorimetric assay kit. PIF1 expression was upregulated in pancreatic cancer tissues and cells. Knockdown of PIF1 exhibited the repressive impact on the viability of AsPC-1 and PANC-1 cells. PIF1 knockdown enhanced LDH release and apoptosis in both AsPC-1 and PANC-1 cells. PIF1 downregulation could augment the sensitivity of gemcitabine in pancreatic cancer cells, as evidenced by lower cell viability and higher LDH release and apoptosis rate after knocking down PIF1 in gemcitabine-treated pancreatic cancer cells relative to pancreatic cancer cells treated with gemcitabine alone. Moreover, PIF1 knockdown increased γH2Ax protein expression and DNA damage, and gemcitabine treatment-induced DNA damage in AsPC-1 and PANC-1 cells was exacerbated by PIF1 silencing. Furthermore, gemcitabine treatment-caused increase of DNA damage was alleviated by PIF1 overexpression; whereas, this effect of PIF1 upregulation was reversed by thymidine, a DNA synthesis inhibitor. In addition, the decreased gemcitabine sensitivity response to pancreatic cancer cells caused by PIF1 upregulation was also hindered by thymidine treatment. In conclusion, PIF1 silencing enhanced gemcitabine sensitivity response to pancreatic cancer cells through aggrandizing DNA damage.

Keywords: DNA damage; PIF1; cell apoptosis; gemcitabine; pancreatic cancer.

MeSH terms

  • Apoptosis
  • Caspase 3 / genetics
  • Caspase 3 / metabolism
  • Cell Line, Tumor
  • DNA Damage
  • Deoxycytidine / pharmacology
  • Drug Resistance, Neoplasm / genetics
  • Gemcitabine*
  • Humans
  • Pancreatic Neoplasms* / drug therapy
  • Pancreatic Neoplasms* / genetics
  • Pancreatic Neoplasms* / metabolism

Substances

  • Caspase 3
  • Deoxycytidine
  • Gemcitabine