Chloroplast genome analysis of three Acanthus species reveal the adaptation of mangrove to intertidal habitats

Gene. 2023 Jul 15:873:147479. doi: 10.1016/j.gene.2023.147479. Epub 2023 May 12.

Abstract

Acanthus is a distinctive genus that covers three species with different ecological niches including Acanthus mollis (arid terrestrial), Acanthus leucostachyus (damp forest) and Acanthus ilicifolius (coastal intertidal). It is an intriguing question how these species evolved from terrestrial to coastal intertidal. In the present study, we assembled chloroplast genomes of A. ilicifolius, A. leucostachyus and A. mollis, which exhibited typical quadripartite structures. The sizes were 150,758, 154,686 and 150,339 bp that comprised a large single copy (LSC, 82,963, 86,461 and 82,612 bp), a small single copy (SSC, 17,191, 17,511 and 17,019 bp), and a pair of inverted repeats (IRs, 25,302, 25,357 and 25,354 bp), respectively. Gene annotation revealed that A. ilicifolius, A. leucostachyus and A. mollis contained 113, 112 and 108 unique genes, each of which contained 79, 79 and 74 protein-coding genes, 30, 29 and 30 tRNAs, and 4 rRNA genes, respectively. Differential gene analysis revealed plenty of ndhs gene deletions in the terrestrial plant A. mollis. Nucleotide diversity analysis showed that the psbK, ycf1, ndhG, and rpl22 have the highest nucleotide variability. Compared to A. leucostachyus and A. mollis, seven genes in A. ilicifolius underwent positive selection. Among them, the atpF gene showed a strong positive selection throughout terrestrial to marine evolution and was important for adaptation to coastal intertidal habitats. Phylogenetic analysis indicated that A. ilicifolius has a closer genetic relationship with A. leucostachyus than A. mollis which further confirmed the evolutionary direction of Acanthus going from terrestrial to coastal intertidal zones.

Keywords: Acanthus; Chloroplast genome; Nucleotide variability; Phylogenetic tree; Positive selection.

MeSH terms

  • Acanthaceae* / genetics
  • Ecosystem
  • Genome, Chloroplast*
  • Nucleotides
  • Phylogeny

Substances

  • Nucleotides