Comparative Analysis of the Interfacial Structure and Properties of BiOX/BiOY (X, Y = F, Cl, Br, and I) Heterostructures through DFT Calculations

Inorg Chem. 2023 May 29;62(21):8397-8406. doi: 10.1021/acs.inorgchem.3c01037. Epub 2023 May 14.

Abstract

This study focuses on the systematic investigation of the microstructure, interfacial energy, and electronic structure of six BiOX/BiOY heterostructures constructed using four bismuth oxyhalide materials. Utilizing density functional theory (DFT) calculations, the study provides fundamental insights into the interfacial structure and properties of these heterostructures. The results indicate that the formation energies of BiOX/BiOY heterostructures decrease in the order of BiOF/BiOI, BiOF/BiOBr, BiOF/BiOCl, BiOCl/BiOBr, BiOBr/BiOI, and BiOCl/BiOI. BiOCl/BiBr heterostructures were found to have the lowest formation energy and were the most easily formed. Conversely, the formation of BiOF/BiOY heterostructures was observed to be unstable and difficult to achieve. Furthermore, the interfacial electronic structure analysis revealed that BiOCl/BiOBr, BiOCl/BiOI, and BiOBr/BiOI displayed opposite electric fields that facilitated electron-hole pair separation. Therefore, these research findings provide a comprehensive understanding of the mechanisms underlying the formation of BiOX/BiOY heterostructures and present theoretical guidance for the design of innovative and efficient photocatalytic heterostructures, with an emphasis on BiOCl/BiOBr heterostructures. This study highlights the advantages of distinctively layered BiOX materials and their heterostructures, which offer a wide range of band gap values, and demonstrates their potential for various research and practical applications.