Harmonic-Reduced Bias Circuit for Ultrasound Transducers

Sensors (Basel). 2023 Apr 30;23(9):4438. doi: 10.3390/s23094438.

Abstract

The gain of class-C power amplifiers is generally lower than that of class-A power amplifiers. Thus, higher-amplitude input voltage signals for class-C power amplifiers are required. However, high-amplitude input signals generate unwanted harmonic signals. Therefore, a novel bias circuit was proposed to suppress the harmonic signals generated by class-C power amplifiers, which improves the output voltage amplitudes. To verify the proposed idea, the input harmonic signals when using a harmonic-reduced bias circuit (-61.31 dB, -89.092 dB, -90.53 dB, and -90.32 dB) were measured and were found to be much lower than those when using the voltage divider bias circuit (-57.19 dB, -73.49 dB, -70.97 dB, and -73.61 dB) at 25 MHz, 50 MHz, 75 MHz, and 100 MHz, respectively. To further validate the proposed idea, the pulse-echo measurements were compared using the bias circuits. The peak-to-peak echo amplitude and bandwidth of the piezoelectric transducer, measured when using a harmonic-reduced bias circuit (27.07 mV and 37.19%), were higher than those achieved with a voltage divider circuit (18.55 mV and 22.71%). Therefore, the proposed scheme may be useful for ultrasound instruments with low sensitivity.

Keywords: harmonic-reduced bias circuit; ultrasound instrument; ultrasound transducer.