An Open-Source ABAQUS Plug-In for Delamination Analysis of 3D Printed Composites

Polymers (Basel). 2023 May 2;15(9):2171. doi: 10.3390/polym15092171.

Abstract

This article presents the development and implementation of the Delamination Plug-in, an open-source tool for modeling delamination tests in the ABAQUS software. Specifically designed for stochastic modeling of 3D printed composites, the plug-in combines the benefits of the graphical user interface (GUI) and the programming of commercial finite element (FE) software. The Delamination Plug-in offers an effortless alternative to the time-consuming analytical modeling and GUI work involved in delamination tests and includes algorithms for several tests, such as the double cantilever beam, end-loaded split, end-notched flexure, and modified end-loaded split tests, solved using the virtual crack closure technique and the cohesive zone method. It enables the user to develop simulations for both simple symmetric laminates and generally layered laminates with additional thermal stresses. The applicability of the tool is demonstrated through its use in two distinct delamination problems, one for conventional and one for 3D printed composite laminates, and its results are compared to analytical models and experimental data from the open literature. The results demonstrate that the Delamination Plug-in is efficient and applicable for such materials. This establishes the tool as an important means of automating delamination analysis and for the development and testing of 3D printed composites, making it a valuable tool for both researchers and industry professionals.

Keywords: (3D printed) composite laminates; ABAQUS plug-in; delamination; finite element modeling; stochastic modeling.