Abscisic Acid Synthesis and Signaling during the Ripening of Raspberry (Rubus idaeus 'Heritage') Fruit

Plants (Basel). 2023 May 5;12(9):1882. doi: 10.3390/plants12091882.

Abstract

The raspberry (Rubus idaeus L.) fruit is characterized by its richness in functional molecules and high nutritional value, but the high rate of fruit softening limits its quality during postharvest. Raspberry drupelets have a particular ripening regulation, depending partially on the effect of ethylene produced from the receptacle. However, the possible role of abscisic acid (ABA) in the modulation of quality parameters during the ripening of raspberry is unclear. This study characterized the fruit quality-associated parameters and hormonal contents during fruit development in two seasons. The quality parameters showed typical changes during ripening: a drastic loss of firmness, increase in soluble solids content, loss of acidity, and turning to a red color from the large green stage to fully ripe fruit in both seasons. A significant increase in the ABA content was observed during the ripening of drupelets and receptacles, with the higher content in the receptacle of ripe and overripe stages compared to the large green stage. Moreover, identification of ABA biosynthesis-(9-cis-epoxycarotenoid dioxygenase/NCED) and ABA receptor-related genes (PYRs-like receptors) showed three genes encoding RiNCEDs and nine genes for RiPYLs. The expression level of these genes increased from the large green stage to the full-ripe stage, specifically characterized by a higher expression of RiNCED1 in the receptacle tissue. This study reports a consistent concomitant increase in the ABA content and the expression of RiNCED1, RiPYL1, and RiPYL8 during the ripening of the raspberry fruit, thus supporting the role for ABA signaling in drupelets.

Keywords: ABA biosynthesis and signaling; NCED and PYL genes; Rubus idaeus; ethylene; fruit quality parameters; softening.