Improving the Surface Integrity of 316L Steel in the Context of Bioimplant Applications

Materials (Basel). 2023 Apr 28;16(9):3460. doi: 10.3390/ma16093460.

Abstract

Bioimplants should meet important surface integrity criteria, with the main goal of the manufacturing process to improve wear and corrosion resistance properties. This requires a special approach at the cutting stage. During this research, the impact of the cutting parameters on improving the surface integrity of AISI 316L steel was evaluated. In this context of bioimplant applications, the mean roughness Sa value was obtained in the range of 0.73-4.19 μm. On the basis of the results obtained, a significant effect was observed of both the cutting speed and the feed rate on changes in the microstructure of the near-surface layer. At a cutting speed of 150 m/min, the average grain size was approximately 31 μm. By increasing the cutting speed to 200 m/min, the average grain size increased to approximately 52 μm. The basic austenitic microstructure of AISI 316L steel with typical precipitation of carbides on the grain boundaries was refined at the near-surface layer after the machining process. Changing the cutting speed determined the hardness of the treated and near-surface layers. The maximum value of hardness is reached at a depth of 20 μm and decreases with the depth of measurement. It was also noted that at a depth of up to 240 μm, the maximum hardness of 270-305 HV1 was reached, hence the height of the machining impact zone can be determined, which is approximately 240 μm for almost all machining conditions.

Keywords: AISI 316L; bioimplant; hardness; surface integrity; surface topography; turning.

Grants and funding

This research received no external funding.