AKAP1 Regulates Mitochondrial Dynamics during the Fatty-Acid-Promoted Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Indicated by Proteomics Sequencing

Int J Mol Sci. 2023 Apr 30;24(9):8112. doi: 10.3390/ijms24098112.

Abstract

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are cells with promising applications. However, their immaturity has restricted their use in cell therapy, disease modeling, and other studies. Therefore, the current study focused on inducing the maturation of CMs. We supplemented hiPSC-CMs with fatty acids (FAs) to promote their phenotypic maturity. Proteomic sequencing was performed to identify regulators critical for promoting the maturation of hiPSC-CMs. AKAP1 was found to be significantly increased in FA-treated hiPSC-CMs, and the results were verified. Therefore, we inhibited AKAP1 expression in the FA-treated cells and analyzed the outcomes. FA supplementation promoted the morphological and functional maturation of the hiPSC-CMs, which was accompanied by the development of a mitochondrial network. Proteomic analysis results revealed that AKAP1 expression was significantly higher in FA-treated hiPSC-CMs than in control cells. In addition, increased phosphorylation of the mitochondrial dynamin Drp1 and an increased mitochondrial fusion rate were found in FA-treated hiPSC-CMs. After AKAP1 was knocked down, the level of DRP1 phosphorylation in the cell was decreased, and the mitochondrial fusion rate was reduced. FA supplementation effectively promoted the maturation of hiPSC-CMs, and in these cells, AKAP1 regulated mitochondrial dynamics, possibly playing a significant role.

Keywords: AKAP1; HiPSC-CM; fatty acid; mitochondrial fusion.

MeSH terms

  • Cell Differentiation
  • Cells, Cultured
  • Fatty Acids / metabolism
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Mitochondrial Dynamics
  • Myocytes, Cardiac* / metabolism
  • Proteomics

Substances

  • Fatty Acids