N-Acetylaspartate and Choline Metabolites in Cortical and Subcortical Regions in Clinical High Risk Relative to Healthy Control Subjects: An Exploratory 7T MRSI Study

Int J Mol Sci. 2023 Apr 22;24(9):7682. doi: 10.3390/ijms24097682.

Abstract

N-acetylaspartate (NAA) and choline (Cho) are two brain metabolites implicated in several key neuronal functions. Abnormalities in these metabolites have been reported in both early course and chronic patients with schizophrenia (SCZ). It is, however, unclear whether NAA and Cho's alterations occur even before the onset of the disorder. Clinical high risk (CHR) individuals are a population uniquely enriched for psychosis and SCZ. In this exploratory study, we utilized 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to examine differences in total NAA (tNAA; NAA + N-acetylaspartylglutamate [NAAG]) and major choline-containing compounds, including glycerophosphorylcholine and phosphorylcholine [tCho], over the creatine (Cre) levels between 26 CHR and 32 healthy control (HC) subjects in the subcortical and cortical regions. While no tCho/Cre differences were found between groups in any of the regions of interest (ROIs), we found that CHR had significantly reduced tNAA/Cre in the right dorsal lateral prefrontal cortex (DLPFC) compared to HC, and that the right DLPFC tNAA/Cre reduction in CHR was negatively associated with their positive symptoms scores. No tNAA/Cre differences were found between CHR and HC in other ROIs. In conclusion, reduced tNAA/Cre in CHR vs. HC may represent a putative molecular biomarker for risk of psychosis and SCZ that is associated with symptom severity.

Keywords: DLPFC; NAA; brain cortical regions; choline; clinical high risk for psychosis.

MeSH terms

  • Aspartic Acid / metabolism
  • Choline / metabolism
  • Creatine / metabolism
  • Hippocampus* / metabolism
  • Humans
  • Magnetic Resonance Imaging*
  • Magnetic Resonance Spectroscopy

Substances

  • N-acetylaspartate
  • Creatine
  • Aspartic Acid
  • Choline