Effect of Eleutheroside E on an MPTP-Induced Parkinson's Disease Cell Model and Its Mechanism

Molecules. 2023 Apr 29;28(9):3820. doi: 10.3390/molecules28093820.

Abstract

This research investigated the effects of eleutheroside E (EE) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease cell model and its mechanism. Methods: To create a cell model of Parkinson's disease, MPTP (2500 μmol/L) was administered to rat adrenal pheochromocytoma cells (PC-12) to produce an MPTP group. Selegiline (50 μmol/L) and MPTP had been administered to the positive group beforehand. The eleutheroside E group was divided into low-, medium-, and high-concentration groups, in which the cells were pretreated with eleutheroside E at concentrations of 100 μmol/L, 300 μmol/L, and 500 μmol/L. Next, MPTP was added to the cells separately. The CCK-8 method was used to measure the cell survival rate. Apart from the CCK-8 method, mitochondrial membrane potential detection, cell reactive oxygen species (ROS) detection, and other methods were also adopted to verify the effect of low, medium, and high concentrations of eleutheroside E on the MPTP-induced cell model. Western blot analysis was used to detect changes in the expression of intracellular proteins CytC, Nrf2, and NQO1 to clarify the mechanism. The results are as follows. Compared with the MPTP group, the survival rates of cells at low, medium, and high concentrations of eleutheroside E all increased. The mitochondrial membrane potential at medium and high concentrations of eleutheroside E increased. The ROS levels at medium and high concentrations of eleutheroside E decreased. Moreover, the apoptosis rate decreased and the expression levels of the intracellular proteins CytC, Nrf2, and NQO1 were upregulated. Conclusion: Eleutheroside E can improve the MPTP-induced apoptosis of PC-12 cells by increasing the mitochondrial membrane potential and reducing the level of intracellular reactive oxygen species (ROS). Moreover, the apoptosis of cells is regulated by the expression of CytC, Nrf2, and NQO1 proteins.

Keywords: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Parkinson’s disease; apoptosis; eleutheroside E.

MeSH terms

  • 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
  • Animals
  • Disease Models, Animal
  • Mice
  • Mice, Inbred C57BL
  • NF-E2-Related Factor 2 / metabolism
  • Parkinson Disease* / drug therapy
  • Rats
  • Reactive Oxygen Species / metabolism

Substances

  • 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
  • Reactive Oxygen Species
  • eleutheroside E
  • NF-E2-Related Factor 2