Self-assembly of porous cellulose fibers and the incorporation of graphene carbon quantum dots for stable luminescence

Carbohydr Polym. 2023 Aug 15:314:120928. doi: 10.1016/j.carbpol.2023.120928. Epub 2023 Apr 19.

Abstract

Porous fibers as excellent carriers can be used to prepare photoluminescence materials. Herein, cellulose nanocrystals (CNCs) were derived from microcrystalline cellulose (MCC) by sulfuric acid hydrolysis. After CNCs were squeezed into a coagulating bath containing silicon precursors obtained by the hydrolysis of tetraethyl orthosilicate, porous cellulose fibers were constructed through self-assembly and then incorporated with graphene carbon quantum dots (GQDs) to prepare porous photoluminescence cellulose fibers. The silicon precursor amount, self-assembly time, and corrosion time were optimized. In addition, the morphology, structure and optical properties of the products were investigated. These results showed that as-prepared porous cellulose fibers with mesopores presented loose and porous mesh. Interestingly, the porous photoluminescence cellulose fibers exhibited blue fluorescence, and the maximum emission peak appeared at 430 nm under the excitation wavelength of 350 nm. Furthermore, the relative fluorescence intensity of the porous photoluminescence cellulose fibers was significantly enhanced compared with nonporous photoluminescence cellulose fibers. This work provided a new method to prepare environmentally and stably photoluminescence fibers, which had potential applications in anti-counterfeit packaging and smart packaging.

Keywords: Cellulose nanocrystals; Graphene quantum dots; Photoluminescence materials; Porous fibers; Self-assembly.