Evaluating high temperature photoelectrocatalysis of TiO2 model photoanode

J Colloid Interface Sci. 2023 Sep:645:765-774. doi: 10.1016/j.jcis.2023.05.014. Epub 2023 May 9.

Abstract

Sunlight concentration has been demonstrated as one promising strategy for practically photoelectrochemical (PEC) water splitting with exceeding 10% solar-to-hydrogen efficiency. However, the operating temperature of PEC devices, including the electrolyte and photoelectrodes, can be elevated to 65 ℃ naturally due to the concentrated sunlight and the thermal effect of near-infrared light. In this work, high temperature photoelectrocatalysis is evaluated using titanium dioxide (TiO2) photoanode as a model system, which is believed to be one of the most stable semiconductors. During the studied temperature range of 25-65 ℃, a linear increment of photocurrent density with a positive coefficient of 5.02 μA cm-2 K-1 can be observed. The onset potential for water electrolysis shows a significant negative shift by 200 mV. An amorphous titanium hydroxide layer and a number of oxygen vacancies generate on the surface of TiO2 nanorods, promoting the water oxidation kinetics. During long-term stability testing, the NaOH electrolyte degradation and TiO2 photocorrosion at high temperatures could cause the decaying photocurrent. This work evaluates the high temperature photoelectrocatalysis of TiO2 photoanode and reveals the mechanism of temperature effects on TiO2 model photoanode.

Keywords: High-temperature; Photocorrosion; Solar water splitting; Stability; Titanium dioxide.