Synergism Effect between Nanofibrillation and Interface Tuning on the Stiffness-Toughness Balance of Rubber-Toughened Polymer Nanocomposites: A Multiscale Analysis

ACS Appl Mater Interfaces. 2023 May 24;15(20):24948-24967. doi: 10.1021/acsami.3c04017. Epub 2023 May 12.

Abstract

As the design and scalable technology development of tough, yet stiff, polymer nanocomposites receive attention in the automotive industry, fundamental understating of underlying toughening mechanisms at the nanoscale is inevitable. However, mechanical tests on rubber-toughened nanocomposites have shown that their overall fracture properties are significantly smaller than theoretical predictions. Our previous study showed that major factors in this regard are the simultaneous operation of different toughening mechanisms and the nanostructural features of the interface. As a result, it may be necessary to employ multiscale and multimechanism modeling strategies to accurately account for the contribution of each toughening mechanism. In this study, the effects of nanofibrillation (i.e., size, orientation, and dispersion) and interfacial tuning on the mechanical properties of nanofibrillated rubber-toughened nanocomposites are examined using molecular dynamics (MD) simulations. We report that by interfacial modification via grafting compatibilizer at the interface, nanofibrillated rubber-toughened polypropylene (PP) nanocomposite can achieve superior mechanical properties as a result of enhanced interfacial load transfer. Compared to pure ethylene propylene diene monomer rubber (EPDM)/PP system, an increase of 49% in energy absorbed per unit volume during fracture was achieved for 30% functionalized nanocomposites. Such an increase in energy dissipation was caused by a transition in the dominant crack propagation mechanism from interfacial slippage to crack-arresting behavior, owing to enhanced interfacial adhesion. MD simulations in conjunction with the multiscale model revealed that such a change in mechanism is caused by the formation of strong covalent bonds, interfacial friction, and the presence of a highly entangled polymeric network at the interface. Although the multiscale framework can be viewed as a road map for modeling the interface of various nanocomposite systems, the results obtained from our study may offer valuable insights for developing robust and scalable fabrication processes for nanofibrillated rubber-toughened nanocomposite structures, which pose significant technological challenges.

Keywords: ReaxFF; compatibilizer; in situ nanofibrillation; maleic anhydride; molecular dynamics; polypropylene; rubber; toughening.