Optimized Pore Nanospace through the Construction of a Cagelike Metal-Organic Framework for CO2/N2 Separation

Inorg Chem. 2023 May 29;62(21):8058-8063. doi: 10.1021/acs.inorgchem.3c01055. Epub 2023 May 12.

Abstract

The development of metal-organic framework (MOF) adsorbents with a potential molecule sieving effect for CO2 capture and separation from flue gas is of critical importance for reducing the CO2 emissions to the atmosphere yet challenging. Herein, a cagelike MOF with a suitable cage window size falling between CO2 and N2 and the cavity has been constructed to evaluate its CO2/N2 separation performance. It is noteworthy that the introduction of coordinated dimethylamine (DMA) and N,N'-dimethylformamide (DMF) molecules not only significantly reduces the cage window size but also enhances the framework-CO2 interaction via C-H···O hydrogen bonds, as proven by molecular modeling, thus leading to an improved CO2 separation performance. Moreover, transient breakthrough experiments corroborate the efficient CO2/N2 separation, revealing that the introduction of DMA and DMF molecules plays a vital role in the separation of a CO2/N2 gas mixture.