Space-Charging Interfacial Layer by Illumination for Efficient Sb2S3 Bulk-Heterojunction Solar Cells with High Open-Circuit Voltage

ACS Appl Mater Interfaces. 2023 May 24;15(20):24583-24594. doi: 10.1021/acsami.3c02843. Epub 2023 May 12.

Abstract

Solution-processed material systems for effective photovoltaic conversion are the key to low-cost and efficient solar cells. While antimony trisulfide (Sb2S3) is a promising photovoltaic absorber, solution-processed quality Sb2S3-based heterojunction systems for solar cells, particularly with an open-circuit voltage (Voc) higher than 0.70 V, are challenging issues. Here, a cadmium sulfide (CdS) interfacial engineering method is developed for the Sb2S3-based bulk-heterojunction (BHJ) solar cells with an efficiency of 6.14% and a Voc up to 0.76 V that is the highest one among solution-processed Sb2S3 solar cells. The prepared Sb2S3-based BHJ solar cells feature a Sb2S3 nanoparticle film interdigitated by a titania (TiO2) nanorod array with a nanostructured CdS shell as an interfacial layer on each TiO2 nanorod core. Upon understanding the interfacial interactions and band alignments in the TiO2-CdS-Sb2S3 system, the function of the CdS interfacial layer as a band-bended spatial spacer interacting strongly with both the TiO2 electron transporter and Sb2S3 absorber for increasing charge collecting efficiency is revealed; moreover, space-charging the band-bended CdS layer by illumination is found and a photogenerated interfacial dipole electric field model is proposed for understanding the high Voc subjected to the presence of the CdS interfacial layer. This work provides a conceptual guide for designing efficient inorganic heterojunction solar cells.

Keywords: antimony sulfide; bulk heterojunction; interfacial engineering; nanorod array; solar cells.