Influence of Carbonate Speciation on Hydrated Electron Treatment Processes

Environ Sci Technol. 2023 May 23;57(20):7849-7857. doi: 10.1021/acs.est.2c09451. Epub 2023 May 12.

Abstract

Advanced reduction processes (ARPs) that generate hydrated electrons (eaq-; e.g., UV-sulfite) have emerged as a promising remediation technology for recalcitrant water contaminants, including per- and polyfluoroalkyl substances (PFASs). The effectiveness of ARPs in different natural water matrices is determined, in large part, by the presence of non-target water constituents that act to quench eaq- or shield incoming UV photons from the applied photosensitizer. This study examined the pH-dependent quenching of eaq- by ubiquitous dissolved carbonate species (H2CO3*, HCO3-, and CO32-) and quantified the relative importance of carbonate species to other abundant quenching agents (e.g., H2O, H+, HSO3-, and O2(aq)) during ARP applications. Analysis of laser flash photolysis kinetic data in relation to pH-dependent carbonate acid-base speciation yields species-specific bimolecular rate constants for eaq- quenching by H2CO3*, HCO3-, and CO32- (kH2CO3* = 2.23 ± 0.42 × 109 M-1 s-1, kHCO3- = 2.18 ± 0.73 × 106 M-1 s-1, and kCO32- = 1.05 ± 0.61 × 105 M-1 s-1), with quenching dominated by H2CO3* (which includes both CO2(aq) and H2CO3) at moderately alkaline pH conditions despite it being the minor species. Attempts to apply previously reported rate constants for eaq- quenching by CO2(aq), measured in acidic solutions equilibrated with CO2(g), overpredict quenching observed in this study at higher pH conditions typical of ARP applications. Moreover, kinetic simulations reveal that pH-dependent trends reported for UV-sulfite ARPs that have often been attributed to eaq- quenching by varying [H+] can instead be ascribed to variable acid-base speciation of dissolved carbonate and the sulfite sensitizer.

Keywords: PFAS; acid−base speciation; advanced reduction process; hydrated electron; laser flash photolysis.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Carbonates
  • Electrons*
  • Sulfites / chemistry
  • Water / chemistry
  • Water Pollutants, Chemical* / analysis

Substances

  • Water Pollutants, Chemical
  • Sulfites
  • Carbonates
  • Water