The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation

Nat Rev Genet. 2023 Sep;24(9):590-609. doi: 10.1038/s41576-023-00601-0. Epub 2023 May 11.

Abstract

Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Epithelial-Mesenchymal Transition / genetics
  • Humans
  • Neoplasms* / genetics
  • Phenotype
  • Tumor Microenvironment