Full profile contamination process simulation and risk prediction of synthetic musk from reclaimed water receiving river to groundwater via vadose zone: A case study of Chaobai River

Chemosphere. 2023 Aug:332:138879. doi: 10.1016/j.chemosphere.2023.138879. Epub 2023 May 9.

Abstract

Long-term infiltration from river receiving reclaimed water will pose potential risk to vadose zone and groundwater because of the persistent and highly toxic contaminants. In order to predict the spatio-temporal distribution of ecological and health risk, a coupled model of HYDRUS-GMS combined risk quotient was proposed. The model can accurately predict water flow, solute transport and risk with model due to the acceptable efficiency (E:0.99), mean absolute error (MAE:0.031 m) and root-mean-square error (RMSE:0.039 m). The content of galaxolide (HHCB), a typical pharmaceutical and personal care product with hydrophobicity and refractory in reclaimed water, increased in vadose zone at an accumulative rate of 6.1 ng g-1 year-1 with infiltration time extension. The accumulation will pose ecological risk after 53 years infiltration. The potential risk will extent to groundwater once penetrate through vadose zone, and mainly diffuse along groundwater flow direction. The migration rate along horizontal direction of groundwater flow is 0.03396 m d-1, which is 9.7 and 1.1 times higher than longitudinal and vertical rates due to the variation of driving force in three directions. The migration rate of HHCB was 2.6% of groundwater flow due to hydrophobicity (LogKow = 5.9). The complete biochemical decomposition of HHCB will take approximately 0.38 year through metabolite within 182.65 m distance. The persistence was attributed to the high chronic toxicity and the low bio-availability. The major biochemical metabolism of HHCB was enzymatic hydrolysis, ring opening, decarboxylation, which was decomposed and carbonized within approximately 0.38 year after 182.65 m migration distance. This study provided a new approach to predict the spatio-temporal risk distribution due to reclaimed water reuse.

Keywords: Coupling simulation model; Environmental risk prediction; Galaxolide; Metabolic pathway; Spatiotemporal distribution.

MeSH terms

  • Computer Simulation
  • Groundwater* / chemistry
  • Rivers
  • Water
  • Water Pollutants, Chemical* / analysis

Substances

  • Water
  • musk
  • Water Pollutants, Chemical