Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis

Science. 2023 May 12;380(6645):644-651. doi: 10.1126/science.adf6984. Epub 2023 May 11.

Abstract

Reducible supports can affect the performance of metal catalysts by the formation of suboxide overlayers upon reduction, a process referred to as the strong metal-support interaction (SMSI). A combination of operando electron microscopy and vibrational spectroscopy revealed that thin TiOx overlayers formed on nickel/titanium dioxide catalysts during 400°C reduction were completely removed under carbon dioxide hydrogenation conditions. Conversely, after 600°C reduction, exposure to carbon dioxide hydrogenation reaction conditions led to only partial reexposure of nickel, forming interfacial sites in contact with TiOx and favoring carbon-carbon coupling by providing a carbon species reservoir. Our findings challenge the conventional understanding of SMSIs and call for more-detailed operando investigations of nanocatalysts at the single-particle level to revisit static models of structure-activity relationships.