Effect of aging on polyethylene microfiber surface properties and its consequence on adsorption characteristics of 17alpha-ethynylestradiol

Sci Prog. 2023 Apr-Jun;106(2):368504231173835. doi: 10.1177/00368504231173835.

Abstract

This study assessed the interactive changes to the endocrine disruptor 17 alpha-ethynylestradiol (EE2) triggered by photoaging onto fibrous microplastics frequently found in the environment. The physicochemical property change of the polyethylene (PE) microfiber according to irradiation (i.e. 14 d UV-C (254 nm)) was studied through Fourier transform infrared spectroscopy, scanning electron microscope, and contact angle analysis. Additionally, the EE2 adsorption kinetics experiment was performed for the PE microfiber before and after UV irradiation to assess the change in adsorption characteristics. After UV irradiation, the PE microfiber surface roughness increased, the oxygen-containing functional group (e.g. carbonyl group) increased, and the contact angle (virgin PE: 80.02°, aged PE: 65.13°) decreased. A decrease in the surface hydrophobicity led to a decrease in the adsorption rate of EE2 (virgin PE: k = 0.0105 h-1, aged PE: not calculated). The hydrophobic interaction significantly affects the adsorption behavior of hydrophobic organic pollutants such as EE2 onto MPs, and continuous photo-aging of MPs may cause a new pattern of ecological risk. Therefore, there is a greater necessity for additional research relevant to this issue.

Keywords: Microplastics; UV irradiation; endocrine disrupting chemicals; polyethylene; synthetic estrogens.