Expression and biological function of the cellular communication network factor 5 (CCN5) in primary liver cells

J Cell Commun Signal. 2023 Jun;17(2):307-320. doi: 10.1007/s12079-023-00757-8. Epub 2023 May 11.

Abstract

The cellular (centralized) communication network (CCN) factor protein family contains six small secreted cysteine-rich proteins sharing high structural similarity. These matricellular proteins have vital biological functions in cell adhesion, migration, cell cycle progression, and control of production and degradation of extracellular matrix. However, in liver the biological functions of CCN proteins become most visible during hepatic injury, disease, and remodeling. In particular, most of the hepatic functions of CCN proteins were derived from CCN2/CTGF, which becomes highly expressed in damaged hepatocytes and acts as a profibrogenic molecule. On the contrary, CCN1/CYR61 seems to have opposite effects, while the biological activity during hepatic fibrosis is somewhat controversially discussed for other CCN family members. In the present study, we analyzed the expression of CCN5/WISP2 in cultures of different types of primary liver cells and in an experimental model of hepatic fibrosis. We found that CCN5 is expressed in hepatic stellate cells, myofibroblasts and portal myofibroblasts, while CCN5 expression is virtually absent in hepatocytes. During hepatic fibrogenesis, CCN5 is significantly upregulated. Overexpression of CCN5 in portal myofibroblasts reduced expression of transforming growth factor-β receptor I (ALK5) and concomitant Smad2 activation, whereas JunB expression is upregulated. Moreover, elevated expression of CCN5 induces endoplasmic reticulum stress, unfolded protein response and apoptosis in portal myofibroblasts. We suggest that upregulated expression of CCN5 might be an intrinsic control mechanism that counteracts overshooting fibrotic responses in profibrogenic liver cells.

Keywords: Bile duct ligation; Endoplasmic reticulum stress; Hepatic stellate cells; Liver fibrosis; Portal myofibroblasts; TGF-β1; Unfolded protein response.