Development of a Magnetic Bead-Based Method for Specific Detection of Enterococcus faecalis Using C-Terminal Domain of ECP3 Phage Endolysin

J Microbiol Biotechnol. 2023 Jul 28;33(7):964-972. doi: 10.4014/jmb.2302.02033. Epub 2023 Apr 20.

Abstract

Bacteriophage endolysins are peptidoglycan hydrolases composed of cell binding domain (CBD) and an enzymatically active domain. A phage endolysin CBD can be used for detecting bacteria owing to its high specificity and sensitivity toward the bacterial cell wall. We aimed to develop a method for detection of Enterococcus faecalis using an endolysin CBD. The gene encoding the CBD of ECP3 phage endolysin was cloned into the Escherichia coli expression vector pET21a. A recombinant protein with a C-terminal 6-His-tag (CBD) was expressed and purified using a His-trap column. CBD was adsorbed onto epoxy magnetic beads (eMBs). The bacterial species specificity and sensitivity of bacterial binding to CBD-eMB complexes were determined using the bacterial colony counting from the magnetic separations after the binding reaction between bacteria and CBD-eMB complexes. E. faecalis could bind to CBD-eMB complexes, but other bacteria (such as Enterococcus faecium, Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Streptococcus mutans, and Porphyromonas gingivalis) could not. E. faecalis cells were fixed onto CBD-eMB complexes within 1 h, and >78% of viable E. faecalis cells were recovered. The E. faecalis recovery ratio was not affected by the other bacterial species. The detection limit of the CBD-eMB complex for E. faecalis was >17 CFU/ml. We developed a simple method for the specific detection of E. faecalis using bacteriophage endolysin CBD and MBs. This is the first study to determine that the C-terminal region of ECP3 phage endolysin is a highly specific binding site for E. faecalis among other bacterial species.

Keywords: Detection of bacteria; Enterococcus faecalis; bacteriophage endolysin; cell binding domain; magnetic beads.

MeSH terms

  • Bacteria / metabolism
  • Bacteriophages* / genetics
  • Bacteriophages* / metabolism
  • Endopeptidases / metabolism
  • Enterococcus faecalis
  • Magnetic Phenomena

Substances

  • endolysin
  • Endopeptidases