A dramatic decline in fruit citrate induced by mutagenesis of a NAC transcription factor, AcNAC1

Plant Biotechnol J. 2023 Aug;21(8):1695-1706. doi: 10.1111/pbi.14070. Epub 2023 May 10.

Abstract

Citrate is a common primary metabolite which often characterizes fruit flavour. The key regulators of citrate accumulation in fruit and vegetables are poorly understood. We systematically analysed the dynamic profiles of organic acid components during the development of kiwifruit (Actinidia spp.). Citrate continuously accumulated so that it became the predominate contributor to total acidity at harvest. Based on a co-expression network analysis using different kiwifruit cultivars, an Al-ACTIVATED MALATE TRANSPORTER gene (AcALMT1) was identified as a candidate responsible for citrate accumulation. Electrophysiological assays using expression of this gene in Xenopus oocytes revealed that AcALMT1 functions as a citrate transporter. Additionally, transient overexpression of AcALMT1 in kiwifruit significantly increased citrate content, while tissues showing higher AcALMT1 expression accumulated more citrate. The expression of AcALMT1 was highly correlated with 17 transcription factor candidates. However, dual-luciferase and EMSA assays indicated that only the NAC transcription factor, AcNAC1, activated AcALMT1 expression via direct binding to its promoter. Targeted CRISPR-Cas9-induced mutagenesis of AcNAC1 in kiwifruit resulted in dramatic declines in citrate levels while malate and quinate levels were not substantially affected. Our findings show that transcriptional regulation of a major citrate transporter, by a NAC transcription factor, is responsible for citrate accumulation in kiwifruit, which has broad implications for other fruits and vegetables.

Keywords: Actinidia; Al-activated malate transporters (ALMTs); NAC transcriptional factor; citrate; kiwifruit.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Citric Acid* / metabolism
  • Fruit / metabolism
  • Gene Expression Regulation, Plant / genetics
  • Malates / metabolism
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Transcription Factors* / genetics
  • Transcription Factors* / metabolism

Substances

  • Citric Acid
  • Transcription Factors
  • malic acid
  • Malates
  • Plant Proteins