Exceptional structural diversity of hybrid halocuprates(I) with methylammonium and formamidinium cations

Dalton Trans. 2023 May 30;52(21):7152-7160. doi: 10.1039/d3dt00687e.

Abstract

Hybrid halocuprates(I) are nowadays the subject of intensive studies as promising materials for various optoelectronic applications. This class of materials is characterized by wide structural diversity enabled by a great variety in the size and shape of organic cations. Therefore, the study of composition-structure-property relationships is a key step for the rational design of new halocuprate materials with desired properties. In this paper, we comprehensively studied MABr/CuBr and FABr/CuBr systems (MA+ = methylammonium and FA+ = formamidinium) and established the existence of five novel phases (namely, MACu2Br3, FA2[Cu4Br6], MACuBr2, FACuBr2, and FA3CuBr4) related to four different structural types and three distinct A+ : Cu+ stoichiometries (A+ = MA+/FA+). The optical properties of the discovered phases are studied by absorption and low-temperature photoluminescence spectroscopy. Based on a crystal-chemical analysis, we explained a unique structural diversity of the MA- and FA-based bromocuprates, as well as revealed new structure-property relationships.