Flexible and Transparent Electronic Skin Sensor with Sensing Capabilities for Pressure, Temperature, and Humidity

ACS Appl Mater Interfaces. 2023 May 24;15(20):24923-24932. doi: 10.1021/acsami.3c03829. Epub 2023 May 9.

Abstract

Inspired by the interlocked biological geometry of human skin, herein, we design a flexible and transparent sensor with interlocked square column arrays with composites of Ag nanoparticles (AgNPs), citric acid (CA), and poly(vinyl alcohol) (PVA), which exhibit multisensory capabilities for pressure, temperature, and humidity. As a flexible pressure sensor, the interlocked AgNPs/CA/PVA sensor possesses a high sensitivity (-1.82 kPa-1), low detection limit (10 Pa), fast response (75 ms), and outstanding stability due to the high sensitivity of the contact resistance of the interlocked square column arrays to pressure. Because of the rigid dependence of the resistance of the AgNPs/CA/PVA composite on temperature, the interlocked AgNPs/CA/PVA sensor can also act as a temperature sensor, which exhibits high resolution (0.1 °C) and reliability in detecting ambient temperature. In addition, it is found that the amount of water molecules adsorbed by PVA and CA changes with the ambient humidity. Therefore, the interlocked AgNPs/CA/PVA sensor is also able to detect humidity in real time. This work proposes a simple but useful route to fabricate a flexible and transparent electrical skin sensor, which has great potential in the perception of pressure, temperature, and humidity.

Keywords: electrical skin; flexible pressure sensor; humidity sensor; interlocked geometry; temperature sensor.